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The demand for chemical analysis is constantly
growing in the modern world. This is primarily due to
the increasingly stringent standards for product qual-
ity, production efficiency [1], and environmental
safety. Analytical control deeper penetrates into pro-
duction activities [2] and daily life [3]. One of the
results of this process is the development of instru-
mental analytics. Modern analytical tasks require the
creation of new devices and new methodology. Analy-
sis on the production line or in the field without con-
stant sampling [4] is more often required, and its
results should be issued almost instantly, up to tens of
measurements per second. Conventional laboratory
analysis does not meet these requirements; new
approaches are needed, such as specialization, interim
analysis, and screening [5].

Optical spectroscopy is considered one of the main
instrumental methods in analyzing multicomponent
samples [6], which combines information content,
nondestructiveness, and high adaptability. The rapid
development of optical analysis is based mainly on the
achievements of optics and photonics, like new detec-
tors, light sources, light-conducting materials, and the
improvement of electronics and methods for analyz-
ing multidimensional data (chemometrics) [7].

In the last two decades, optical spectroscopy has
begun to develop into specialized analyzers, initially
created for a specific practical problem. These devices,
which occupy an intermediate position between pho-
tometric sensors and laboratory spectrometers, are
called optical multisensor systems (OMSs) [8], oper-
ating in various wavelength regions and designed for
determining both individual substances and general-
ized chemical parameters. A few sensor channels are
usually used, generally wide, for example, recording
the total absorbance in selected spectral ranges. The

use of chemometrics compensates the expected lack of
selectivity. Methods of mathematical simulation are
used both for data analysis and building predictive
models and at the stage of creating a multisensor sys-
tem, in particular, for designing an experiment and
optimizing system channels during the development
[3, 8].

This review examines the state-of-the-art optical
spectroscopy and considers trends in its development
towards creating OMSs. The definition of an optical
multisensor system is introduced, and its main differ-
ences from conventional laboratory spectroscopy are
shown. Examples of current OMS and research in this
field are given, illustrating their enormous potential in
solving various analytical problems.

MODERN DIRECTIONS OF DEVELOPMENT 
IN OPTICAL SPECTROSCOPY

Laboratory spectroscopy. Optical spectroscopy has
historically been focused on laboratory measurements
of precollected samples of various compositions. It has
evolved as a universal analytical solution, so it was not
fully adapted to modern analytical tasks, such as rapid
analysis, process monitoring, and field research. The
limited bandwidth of laboratory spectroscopy does not
meet the continuously growing number of samples
and objects requiring analysis [5].

The development of analytical spectroscopy has
followed the technical improvement of instruments.
The versatility and efficiency of an optical analyzer for
quantitative and qualitative analysis are still associated
with the expansion of spectral and dynamic ranges,
improved resolution, and the automation of measure-
ments. These and other qualities lead to the constant
technical complication of spectrometers, increasing
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their dimensions and cost. The structural complexity
of mass-produced spectrometers is also associated
with their standardization, ensuring the identity of
data for the same samples. Unsurprisingly, spectros-
copy is strongly associated with high-tech laboratory
analysis, stationary equipment, and highly trained
personnel. Centralized sampling approach can no
longer cope with the growing volumes of samples and
controlled parameters in various fields of activity, such
as quality control of manufactured products, environ-
mental monitoring, and medicine, and with the emer-
gence of new fields and forms of analysis, that is, field
and rapid analysis. As a response to these challenges,
it was proposed to use a fundamentally new—multi-
sensory—approach to optical spectral analysis [8],
which has been actively developing in the last decade,
including through the efforts of Russian scientists.

Decentralization and personalization of analysis.
The monopoly of centralized laboratory analysis has
been seriously shaken by the development of process
analytical technology (PAT) and its consolidation in
the regulations of the US Food and Drug Administra-
tion (FDA) in 2004 [1, 2]. Optical spectroscopy is the
flagship method of PAT, with a process analyzer capa-
ble of performing continuous online measurements at
its core. In this case, the result of an analysis is
received by the local operator of the process rather
than by an analytical chemist, without sending sam-
ples to the laboratory [9].

The tendency that has arisen in production towards
the decentralization of analysis penetrates other fields
of activity. Optical spectroscopy plays an essential role
in the analysis of food, pharmaceutical, and medical
samples. However, along with conventional applica-
tions, new ones appear, the social and economic need
for which can be significantly lower. In other words,
chemical analysis is beginning to be applied where it
was not used before. This tendency is still at the very
beginning of its development. Many possible tasks and
applications have not yet been covered by the currently
dominant methodology of chemical analysis [5].

Today, there is a growing need in the analysis of
various generalized indicators of chemical composi-
tion, such as nutritional value [10] and mineralization
[11] of agricultural products, authenticity and the
presence of counterfeits in food [12, 13] and pharma-
ceutical production [14], and many others [15]. Opti-
cal analysis is beginning to be applied in new fields,
such as diagnostics of biological tissue [16], sorting of
materials [17], remote analysis using spectral images
[18], etc.

The range of test samples expands due to the
reduction in the cost of analysis, and the miniaturiza-
tion and autonomy of devices. Examples of such
devices are already available in the field of personal
diagnostics, for example, optical pulse oximeters [19].
Work is underway to create and improve individual
noninvasive glucometers [20]. In general, we can state
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a gradual transition of chemical analysis from the
expert field to widespread and, in the future, to mass
use.

The widespread availability of mobile phones and
other devices equipped with a powerful processor, an
optical detector, and a built-in camera facilitates anal-
ysis personalization. The prototype of a miniature
urine creatinine analyzer created at St. Petersburg
State University [21] is a convincing illustration of
implementing an optical analyzer based on a smart-
phone. There are other examples of such devices,
which were reviewed in [22].

The industrial production of personal analyzers is
associated with an inevitable trade-off between price
and quality. The development of scientific approaches
to multisensor systems and data analysis obtained with
their help is becoming increasingly important.

Materials, technical solutions, and research meth-
ods. The current status of optical spectroscopy is
directly related to creating new fiber-optic materials,
probes, light sources, and detectors and the develop-
ment of methods for obtaining and processing data.
Some examples are given below.

The Lighthouse ProbeTM (LHP) immersion probe
was designed for continuous spectral analysis of pro-
cesses in the ultraviolet (UV), visible (VIS), and near-
infrared (NIR) regions [23]. It is made of pharmaceu-
tical and food-grade certified materials and records
online diffuse reflectance spectra of powders and bulk
materials such as granulates and pellets1, including in
their manufacturing and processing. The high infor-
mation content of the spectra is ensured by a full
(360°) view of the medium through seven optical win-
dows located around the circumference of the probe.
Each of the windows simultaneously serves to irradiate
the medium and receive diffusely reflected light trans-
mitted to a remote detector through a fiber optic cable.
The LHP automatic cleaning system periodically
removes adhered material (Fig. 1).

The working spectral region of optical fibers is
expanding due to new light-guiding materials. Mod-
ern optical fibers cover almost the entire optical range,
including the conventionally “blind” infrared regions.
Chalcogenide IR (CIR) fibers invented in Russia,
based on arsenic sulfide (As2S3), have high transmis-
sion in the range of 1.5–6 μm [24], and oxygen-free
polycrystalline IR (PIR) fibers from solid solutions of
silver halides AgCl1–xBrx (0 < x < 1) [25] have the
required transparency in the area of “fingerprints” (3–
18 μm), which contains chemical information from
many functional groups.

Thanks to new fiber optic materials, attenuated
total reflection (ATR) IR probes are increasingly used
in PAT to analyze various media. The optical path of

1 Pellets are a pharmaceutical form, spherical granules with a
diameter of about 1 mm, commonly used to fill medicinal cap-
sules.
F ANALYTICAL CHEMISTRY  Vol. 77  No. 3  2022



OPTICAL MULTISENSOR SYSTEMS 279

Fig. 1. Principle of operation of an LHP probe: (a) measurement, (b) cleaning and subsequent drying, and (c) calibration. 
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an ATR measurement is 0.5–2 μm and is determined
by the penetration depth of the evanescent field of the
used ATR crystal, multiplied by the number of internal
reflections determined by its geometry. The relatively
short optical path length is often advantageous given
the higher (than, for example, in NIR) extinction
coefficients of substances in the IR region. The most
commonly used ATR cells are made from ZrO2, ZnSe,
Ge, Si, and diamond crystals. Their shape (a cone,
prism, hemisphere, polyhedron, etc.) is selected
depending on the nature of the sample [26] and the
used spectral region. In the last 20 years, some ATR
probes for infrared analysis based on CIR and PIR
fibers have been developed. These probes coupled
with IR spectrometers were successfully tested in solv-
ing many analytical problems, including monitoring
processes and analyzing biological tissues [27–32].

A real breakthrough in light sources is associated
with a significant reduction in the cost and an increase
in the capabilities of LEDs, which now cover almost
the entire optical spectral region from UV to IR and
have intensities of up to dozens of watts (in pulsed
mode). Therefore, they are increasingly used in the
optical analysis [33]. Being close to monochromatic
radiation sources in spectral properties, high-power
LEDs can replace lasers for f luorescence excitation
[34, p. 342] and even the effect of Raman scattering
[35]. The service life of LEDs can be calculated in
thousands of hours while maintaining a stable spec-
trum and emission intensity. This makes them much
more practical than lamps conventionally used in
spectroscopy. An innovative area of spectroscopic
analysis is using a set of LEDs at different operating
wavelengths as a source instead of traditional white
light, which frees spectrometers from the most expen-
sive components. However, some problems arise in
using this approach, in particular, a relatively broad
emission spectra of LEDs, their variability and insta-
bility, etc. The first examples of research devices using
LEDs for spectral analysis [36–38] have shown their
advantages as light sources for spectroscopy over con-
ventional lamps. LEDs are highly efficient and possess
much higher brightness. However, the development
and widespread use of LED analyzers are limited due
to the incompleteness of scientific research and the
lack of practical experience.
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We should note progress made in developing low-
cost pyroelectric detectors and miniature high-resolu-
tion spectrometers based on them [39–41]. Pyroelec-
tric detectors are based on photosensitive elements
covered with a film of pyroelectric material (lead zir-
conate titanate), which generates a voltage signal when
the temperature is changed. Pyroelectric detectors are
designed to analyze rather narrow spectral ranges in
the NIR and IR regions. A typical example of a
microspectrometer is a Fabry-Pérot tunable interfero-
metric sensor (TIS) adjustable over relatively narrow
spectral intervals, using microelectromechanical sys-
tems (MEMS) technology [42]. For example, a TIS
made by InfraTec (Dresden, Germany) [43] consists
of moving and stationary mirrors deposited on a film
with a thickness of 300 μm. The backs of both mirrors
are coated with antireflection layers optimized for a
specific spectral range, for example, 8–10 μm. The
spectral transmission of such an optical filter is char-
acterized by a narrow-wavelength resonance curve.
The maximum transmission at the resonant wave-
length can be adjusted electrostatically by changing
the distance between the mirrors. The mirrors’ qual-
ity, reflectivity, and absorption loss determine the TIS
resolution; for example, at 50% filter transmission, it
is about 200 nm.

The production of mini- and micro-spectrometers
for UV-Vis and NIR spectral ranges is developing, and
their cost is reduced. This enables the development of
OMSs based on them. Qmini microspectrometers
(Germany) [44], products of Spectral Engines (Fin-
land) [45], and MicroNIR PAT-U from VIAVI Solu-
tions (Italy) [46] are typical examples of such devices.
Because of advances in micromachinery technologies,
new areas of mid-IR and near-IR spectroscopy in
industrial and field applications appeared.

The approaches to spectral analysis are also chang-
ing. A notable trend is a combination of two or more
different spectroscopic methods in one analyzer.
Combinations of methods are used to cover various
aspects of the process in PAT [47–49] or to improve
the classification of biological tissues, including in
oncological diagnostics [50–52]. This combination is
called complementary. Suppose a combination of dis-
similar spectral data in one model improves analytical
o. 3  2022
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capabilities, for example, the accuracy of determining
a component. In that case, we can speak of a synergic
effect (when the combination works better than each
method separately). So far, no generally accepted the-
oretical justification for synergy in multispectral anal-
ysis has been proposed, which would make it possible
to obtain a predictable result.

In chemometrics, several efficient algorithms were
developed to analyze combined data, including blocks
of different methods or stages of a technological pro-
cess [53–55]. A particular case of combined (or aug-
mented) data is three-way and higher modality data.
They are obtained, for example, using two-dimen-
sional f luorescence spectroscopy [56], spatially
resolved measurements (as in spectral images [57]),
and combined methods [58]. The latter include HPLC
with UV detection and thermogravimetric analysis
with an IR analyzer. To analyze three-way data, spe-
cial algorithms are required, such as the unfolding
method, which transforms a three-dimensional data
array into a two-dimensional one by joining its con-
stituent matrices into one [59]. Three-way data were
successfully used for the development of OMSs [3].

Data processing. Real-world spectral data contain
a wealth of useful chemical information. Its extraction
by mathematical methods is complicated by overlap-
ping analytical signals, scattering, noise, instrument
artifacts, and other factors. Therefore, the analysis of
complex samples is not complete without chemomet-
rics, which has become an almost mandatory compo-
nent of modern analytical methods based on optical
spectroscopy [7].

The evolution of the instrumental base and meth-
ods for analyzing optical spectroscopy data are closely
interrelated. The invention of new analytical methods
and devices usually stimulates a corresponding math-
ematical apparatus and software development. A strik-
ing example of the reverse effect is a breakthrough in
developing NIR spectroscopy, primarily associated
with the emergence of the partial least-squares projec-
tion algorithm (PLS), a now widely used method of
regression analysis. The publication of the PLS algo-
rithm in 1982 [60] and subsequent widespread use in
applied research [61], especially for multivariate cali-
bration on spectral data, turned NIR spectroscopy
into one of the most demanded tools for quantitative
analysis, both laboratory and PAT. Previously, this
method was little used in practice because of overlap-
ping bands and an intense background signal.

Regression algorithms, such as PLS and multiple
linear regression (MLR), are required to create cali-
bration models in quantitative analysis. Exploratory
data analysis methods such as principal component
analysis (PCA) [62] and similar projection methods
aimed at the in-depth study of the internal data struc-
ture in factor space also play an essential role. For
samples, this consists in identifying groups and outli-
ers, analyzing relationships (for example, a develop-
JOURNAL O
ment curve over time), analyzing statistical influence.
The same properties can be studied for variables. In
the latter case, the most interesting is the search for the
most influential variables and hidden spectral
responses [63]. Ultimately, such exploratory data
analysis improves understanding of the objects of
interest and the analytical method itself. One can cre-
ate an infinite number of different factor spaces for the
same data using known or inventing new projection
transformations. The effectiveness of the factor space
is ultimately determined by its practicality for the anal-
ysis of specific data [4].

Preprocessing of spectra, that is, their modification
before analysis is carried out to improve the quality
and the information content of the data. In terms of
statistics, information is the variance of variables. The
purpose of preprocessing is to improve the accuracy of
data analysis by removing irrelevant information like
noise, background signal (baseline), and uninforma-
tive regions of the spectrum while preserving valuable
information as much as possible. Preprocessing can
also improve the visualization of useful information,
for example, in using differentiation or data transfor-
mation functions such as linearization. The most
commonly used data preprocessing methods are pre-
sented in Table 1.

The considered methods are often used in develop-
ing the OMSs for preprocessing the initial complete
spectral data. However, the possibilities of modifying
the OMS data themselves are severely limited by their
peculiarities. Because of the small number of variables
and the unevenness of the step, only weighting, nor-
malization, and correction of scattering can be applied
to them (Table 1), and the SNV and MSC methods are
meaningful only when the number of channels is at
least three. For a two-channel optical multisensor sys-
tem, one can use only arithmetic operations with the
values on different channels obtained in the same
measurement or independent transformation of vari-
ables in each of the channels, for example, weighing by
the autoscale method, that is, dividing each value of a
variable by its standard deviation. The selection of the
most qualitative and informative data (both objects
and variables) constitutes a separate group of prepro-
cessing methods. The selection of variables is essential
in developing multisensor systems, and the selection
of objects is crucial for the data analysis of working
OMSs.

The OMS data have several features that distin-
guish them from conventional spectra, including a
small number of variables, their uneven distribution
along the spectral axis, insufficient standardization,
and a potentially large volume of measurements. This
imposes certain restrictions on the use of data analysis
algorithms common in spectroscopy and creates a
need in developing new approaches.

The small number of variables in the data matrix
and the absence of significant correlations expected
F ANALYTICAL CHEMISTRY  Vol. 77  No. 3  2022
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Table 1. Main methods for the preprocessing of optical spectra

aSNV, standard normal variate; bMSC, multiplicative scatter correction; cPLC, piecewise linear baseline correction; dSG, smoothing
and differentiation according to Savitzky–Golay; eMA, moving average method; fGA, genetic algorithm; giPLS, interval PLS; hCARS,
competitive adaptive reweighted sampling.

Preprocessing Effects to be eliminated Algorithms

Weighing Difference in scales/significance of variables Autoscaling [64, p. 76]
Normalization Variable volume of the sample SNVa [65, p. 124]
Scattering correction “Scattering” effect MSCb [66]
Baseline correction Background absorption in spectra PLCc [67]
Smoothing Noise SGd [68], MAe [69]
First/second derivatives Unresolved bands, baseline SG [68]
Selection of variables and objects Noninformative variables or objects, outliers GAf [70], iPLSg [71], CARSh [72]
due to optimization make OMS data similar to non-
spectral analytical data. The number of variables can
also be significantly reduced without a significant loss
for the analysis result [73, 74]. Reducing the number of
variables in the data does not affect the applicability of
PLS regression and most other multivariate calibra-
tion algorithms but creates the prerequisites for using
the classical method of multiple linear regression,
which was widely used before the advent of projection
methods [64, p. 125]. Multiple linear regression does
not use factor projection, solving the regression equa-
tion directly from the data matrix and the concentra-
tion vector. According to the available data, MLR on
preselected spectral variables gives excellent results
[75, 76]. The advantages of the method are simplicity
and lower computation load, which can be significant
for autonomous sensors using lightweight versions of
computers. Because of the small number of variables,
the construction of calibration models based on OMS
data and the subsequent predictions take less time.
This can be a significant factor in analyzing “big data”
and online monitoring of fast processes.

OPTICAL MULTISENSOR SYSTEMS
Definition of optical multisensor systems and their

distinctive features. The author’s previous works sys-
tematically introduced the term “optical multisensor
system” [3, 8]. Because of their distinctive features
described below, OMSs should be distinguished into a
separate class of spectrometric devices.

In [8], the following definition was given: “An opti-
cal multisensor system is an analytical device that
includes a set of two or more optical sensors (sensor
channels), optimized for a specific application.” The
term “sensor” here means a chemical sensor according
to the IUPAC nomenclature [77]. The OMS informa-
tion channels are integrated optical signals in the
selected spectral ranges.

The term multisensor system first appeared in elec-
trochemistry to describe analyzers of the “electronic
nose” type [78] and was firmly entrenched in the
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 77  N
works of the “electronic tongue” group of St. Peters-
burg State University under the leadership of
Yu.G. Vlasov [5, 79]. The “electronic tongue” is also
based on the optimization of an array of nonspecific
sensors (in this case, potentiometric), which have dif-
ferent (cross) sensitivity to the determined compo-
nents [80]. The conceptual similarity of “electronic
tongue” with OMS is obvious, and the differences
lie in the physical principle of operation of the
sensors used, which justifies the commonality of the
terminology.

Introducing a terminologically new spectrometric
device is due to conceptual differences between OMS
and conventional spectroscopy. The most significant
features of OMS are listed below.

In contrast to universal spectrometers, an optical
multisensor system is a  specialized analyzer optimized
for solving a specific analytical problem. This feature
significantly changes the field of applications, opening
up possibilities of field, rapid, and online measure-
ments. The OMS optimization consists of using the
minimum required number of optical channels on the
wavelength ranges selected, taking into account the
application.

Unlike spectrometers designed to operate at high
resolution [34, p. 91], optical channels of OMS are
generally wide. They can be far away from each other
or, on the contrary, overlap strongly, so that the term
“resolution” itself is not always applicable for them.
Generally, the manifestation of selectivity from the
sensors constituting the OMS is not expected. Such a
goal is not set in creating an analyzer, although a high
selectivity of channels to individual sample compo-
nents is possible. Using only the most informative

Analyzer parameter Spectrometer OMS

Analyzer type Universal Specialized
Selectivity High Low
Use of chemometrics Desirable Mandatory
o. 3  2022
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spectral intervals avoids non-informative areas and
irrelevant responses. The positive effect of integration
over broad spectral ranges is manifested in a decrease
in the noise level, which also favorably affects the
accuracy of the analysis.

The low selectivity of the OMS channels implies
multidimensional data analysis methods, such as PLS
calibration. The clever use of chemometrics both at
the channel optimization and in building a predictive
model can fully compensate for the loss of analysis
accuracy in switching from a laboratory spectrometer
to multisensor systems [81, 82]. On the contrary, the
so-called expert approach to the analysis based on
someone’s personal experience and knowledge to set
the number, operating wavelengths, and spectral inter-
vals of OMS channels often turns out to be far from
optimal because of the high number of parameters
affecting the result [83].

There are also less stringent OMS characteristics
that distinguish them from traditional spectrometers.
For example, the measurement speed of process spec-
trometers and OMSs is usually high and amounts to
several milliseconds or even microseconds, as in the
piecewise sorting of cereal grains “on the f ly” [84].
Measurements of OMS analyzers, even of the same
type, may differ. The lack of standardization is solved
by using model transfer methods [85–87], which make
corrections either to the data themselves, measured
using a standard set of samples, or to the predictive
model, which is also one of the tasks of chemometrics.
The structural simplification of the OMS decreases
the size and cost of the analyzer by tens and hundreds
of times and creates prerequisites for the creation of
portable and autonomous devices. The availability and
miniaturization of OMS analyzers enable the creation
of distributed sensor networks that provide the com-
plete control of territories (as in ecology) and complex
samples. With the massive use of OMSs, it becomes
expedient to use universal (also called global) calibra-
tion models [88–90], stored “on the cloud,” as an
alternative to many local ones. Chemometric models
of a conventional spectrometer are usually included in
the software located in a computer connected to the
instrument. On the other hand, optical multisensor
systems rely on the use of built-in microcomputer
technology, which calculates and outputs the mea-
surement results. An essential characteristic of OMS is
its high adaptability for a new application through the
technical readjustment of the optical channels of the
system. A possibility of the modular construction of
OMS may paradoxically combine the narrow special-
ization with the system versatility.

An eye is a unique natural example of an OMS. The
multitude of color shades percieved by the eye is gen-
erated by only three low-selectivity cross-sensitive
optical sensors [91]. The optimization of the sensitivity
spectra of individual sensors of the eye for the environ-
ment occurred due to evolution; therefore, the percep-
JOURNAL O
tion of color in humans and different animal species is
not equal [92].

From the point of view of the proposed terminol-
ogy, OMS is an “electronic eye.”

Optical multisensor systems and single-channel sen-
sors. Single-channel (or simple) photometric sensors
are widely used in practice. For example, the colored
component of a true solution can be determined by
absorption in the visible spectral region, and the sus-
pended component of a colloidal system can be mea-
sured by light scattering, as in nephelometry and tur-
bidimetry [34, p. 186]. In the examples given, one
wavelength is used, assuming system selectivity for the
analyte. To increase selectivity, physical separation or
chemical modification of the sample can be used, for
example, the conversion of an analyte into a colored
complex. Such laboratory sample preparation meth-
ods facilitate photometric analysis and are often used
in practice. However, they can be tedious and not con-
sistently accurate, especially in analyzing complex
mixtures.

Optical information from a single sensor channel
may not be sufficient for analyzing complex samples.
This main disadvantage of photometry is eliminated
by adding additional information channels: the transi-
tion from photometry to spectrophotometry. The
schematic model in Fig. 2 illustrates the advantage of
two-channel measurement for discriminating between
two classes of samples. The linear discriminatory
model distinguishes between two groups of samples on
the plane, although there is no complete separation on
each of the individual channels (Fig. 2a). Nonlinear
discrimination can be used in a more complex case
(Fig. 2b).

An excellent practical example illustrating the
advantages of multichannel measurements is the
developed optical sensor for the water concentration in
powdered materials [93]. This work was based on the
intense absorption of water in the region around
1940 nm. A LED radiation at this wavelength was used
as a source, and the light diffusely reflected by the
powder was captured by a probe and transmitted
through a fiber-optic cable to a photometric detector.
A calibration model for determining water according
to the sensor readings had a rather low accuracy due to
random fluctuations in the intensity of the recorded
signal associated with the morphological inhomoge-
neity of the powder surface (scattering effect) [94].
Since the scattering intensity by relatively large parti-
cles in the NIR region is practically independent of the
wavelength, its differences can be compensated using
a second LED channel at 1300 nm. By detecting sig-
nals from alternately operating sources and subtracting
the second signal from the first, the scattering effect is
neutralized by using the second channel as an internal
reference measurement (reference-free method). To
explain further the principles of OMS development,
let us imagine that the absorption of another compo-
F ANALYTICAL CHEMISTRY  Vol. 77  No. 3  2022
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Fig. 2. Schematic illustration of the discriminant analysis of the data of a two-channel multisensor system: (a) linear and (b) non-
linear separation of classes on a plane composed by measurements of two information channels. 
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Fig. 3. Diagram of information flow of optical multisensor systems (asterisk denotes transformation). 
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nent of the mixture with a variable concentration is
superimposed on the water absorption band. One
more LED must be introduced into the sensor system
to compensate for this factor. If the interfering compo-
nent is unknown, the required optical parameters of
the third channel (wavelength and other emission
spectrum parameters of the third LED) should be
determined experimentally. This can be done without
completely separating the mixture using the full spec-
trum data of an appropriately planned set of samples.
However, even with pure spectra of the components of
the mixture under study, it is hardly possible to “man-
ually” select the best LEDs for the created multisensor
system. The determination of their number and optical
characteristics should be the subject of mathematical
optimization, approaches to the solution of which
were considered in [3, 8].

The use of three or more information channels in
the OMS opens up opportunities for applying many
chemometrics algorithms, including data preprocess-
ing and the construction of predictive models. The
complexity of the OMS is determined precisely by the
number of information channels, that is, independent
sources of information in the output data, which are
further used for mathematical analysis. The technical
presence of many optical sensors does not determine
the number of OMS channels. For example, of all
optical sensors in a system, only one can be used if
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 77  N
other sensors are disabled or their responses are aver-
aged. In this case, the analyzer is still single-channel
regardless of its technical implementation. Even a
high-resolution spectrometer can be used as a simple
photometric sensor if it is calibrated to determine con-
centration from a single wavelength or an integral of
the absorption peak.

Architecture and principle of operation of optical
multisensor systems. A multisensor system can be
described in terms of an information flow, as a device
for collecting, transmitting, and transforming infor-
mation [8]. A schematic diagram shown in Fig. 3 is
suitable for any spectroscopy method. It is especially
useful for illustrating various aspects of the design and
use of OMSs.

The original information carrier is electromagnetic
radiation of the optical spectrum, emitted by one or
several sources. The sources can include devices that
convert white light to monochromatic, such as optical
filters or a monochromator, or initially emit light in a
narrow wavelength region. During the analysis, the
source can operate in a continuous or a pulsed mode.

Analytical information appears when the light
spectral composition changes as a result of its interac-
tion with a sample. The measurement interface is
important to ensure the collection of relevant informa-
tion about the sample. This is a set of optical–
o. 3  2022
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mechanical devices used to convert the luminous f lux
before and after the sample and give the necessary
shape to the sample itself at the time of analysis. Mea-
surement interfaces can be standard or specially
designed for a specific analytical task. The interface
determines the measurement geometry (optical path
length, the distance to the sample, measurement
angle, and other parameters affecting the propagation
of light in the sample) and the method of the delivery
of the modified light to the detector. The frequently
used measurement interfaces are the probe, cuvette,
f low cell, and optical window [95]. More specific
devices include a goniometer (a device for changing
the viewing angle), an integrating sphere, and much
more sophisticated devices, such as a spectral camera
and a confocal microscope. The analysis can take
place both at a contact of the sample with the elements
of the measuring interface and remotely.

Standard elements of measurement interfaces
include protective windows, lenses, mirrors, ATR
crystals, and optical filters. A filter can be installed in
front of the sample or after it (in front of the detector)
to cut off the unnecessary spectral regions or signals,
such as the emission peak of an excitation laser in
Raman spectroscopy or luminescence analysis [34,
p. 88].

After the detector, the information carrier is
changed. Light is first converted into an analog elec-
trical signal, which is then digitized. In Fig. 3, the ana-
log-to-digital converter is conventionally assigned to
the detector. The data of the OMS information chan-
nels released from the detector become an analytical
signal.

The final step in the OMS information flow is a
prediction, involving the application of a previously
created mathematical model to a new measurement
and transforming an analytical signal into an analysis
result. The result can be a concentration value or a
generalized chemical indicator, and also the assign-
ment to a class, that is, the final result of qualitative or
quantitative analysis. If the purpose of the analysis is to
determine the concentration of a component in a sam-
ple, a calibration model is needed, while a “yes/no”
answer results from discriminant analysis. In any case,
the predictive model is an indispensable element of the
information flow. Chemometric models are digital.
That is, the work of an OMS supposes the presence of
a computer.

A computer with installed software is the essential
element of an OMS. It controls the system and is
responsible for predicting and issuing the result. These
functions can be built-in or transferred to an external
computer connected to the multisensor system via a
cable or in a wireless mode. Autonomous OMSs use an
embedded computer with its own display, which
simultaneously serves to control the device and display
the prediction result. In some cases the result can be
displayed using color signal lights on the analyzer
JOURNAL O
housing. For example, green means “yes,” red means
“no,” yellow means “questionable,” and white means
“measurement error.”

There are OMS implementations where the data
flow diagram (Fig. 3) is simplified. For example, the
right side of the circuit after the sample can be
replaced by human perception, the eye (analog of a
detector) and the brain (“computer”). For example,
the f luorescence emission of an excited sample in the
visible region indicates the presence of a specific
chemical substance, and the intensity of this radiation
indicates its concentration. In another version, the
source may be absent from the diagram (Fig. 3), and
natural, for example, solar radiation, may play its role.
Moreover, the light source can itself be a sample; for
example, in the spectral analysis of emitting samples,
lamps, liquid crystal displays, etc. can be used.

Structural elements of optical multisensor systems.
Various structural elements are used in optical spec-
troscopy as light sources, measurement interfaces, and
detectors. The selection of elements in the develop-
ment of OMSs depends on the nature of the sample,
the spectral method used, the optimal measurement
geometry, and the specific requirements for the ana-
lyzer, such as measurement speed, cost, fit-in, and
size. Modern technical elements used for the design of
OMSs, the types of software, and the computers used
are given in Table 2.

With all their diversity, various radiation sources
and detection systems form stable pairs, the technical
characteristics of which determine the division of the
analyzers into spectral regions and methods, such as
UV, Vis, NIR, and IR. Measurement interfaces are
more versatile and are often applied to different spec-
trometers and types of molecular spectroscopy. For
example, a quartz cell can be used to record any opti-
cal spectra, except for IR.

Modern compact microcomputers are usually
applied to store the model and predictions in autono-
mous OMSs. Microcontrollers equipped with the nec-
essary software are increasingly used to control the
device. The predicting software can be installed on a
built-in or an external computer and be standard
(available commercial product) or proprietary. The
latter may be necessary, for example, in creating a
highly optimized sensor. An alternative approach to
prediction is API, which can simplify the device by
transferring all calculations to a remote server (“to the
cloud”), but connecting to the model requires access
to the Internet.

The list of structural elements in Table. 2 is, of
course, not exhaustive. It includes only the main ele-
ments used in the practical applications of this work
and considered in the publications.

Classification of optical multisensor systems. Opti-
cal multisensor systems are diverse and can be based
on different design principles. For systematic design, it
is helpful to distinguish between device types. The
F ANALYTICAL CHEMISTRY  Vol. 77  No. 3  2022
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Table 2. Structural elements of optical multisensor systems

CCD, charge-coupled device; DAD, diode-array detector; MMS, monolithic miniature spectrometer; API, application program interface.
The references give examples of various structural elements in the current OMSs or systems under development.

Unit Structural element

Source LED [36–38, 93, 96–98], laser diode [99], laser, filter [100, 101], diffraction grating [81], 
monochromator [99], prism, lamp [95, p. 74]: incandescent [81], halogen [102, 103], deute-
rium, mercury

Interface Cuvette [103], transmission probe [81], diffuse reflection (DR) probe [69], attenuated total 
ref lection (ATR) probe [50, 81, 104], replaceable ATR element [81], transmission cell [102], 
light guide [81, 96, 97, 103, 105, 106], optical window [107], lens, filter [99, 50], aperture 
[103], integrating sphere [69], goniometer, monochromator [99]

Detector/spectrometer Photodiode [93, 96], DAD [69, 103], CCD [105], MMS [102], pyroelectric [81], microspec-
trometer [107], TIS [81]

Software for prediction Standard, proprietary [96, 107], API
Computer and display Personal computer, microcomputer [93], microcontroller [96]
OMS classification can be based on specific criteria
[3, 8]. The basic physical principles of optical spec-
troscopy are illustrated in Fig. 4.

From the point of view of the measurement geom-
etry, three main measurement modes can be imple-
mented in the OMS, depending on the detection angle
with respect to the irradiation f lux: transmission
(180°), reflection (0°), and scattering (at an angle of
90°, as, for example, in nephelometry, or at a different
angle). A separate “reflection” category is represented
by the method of attenuated total reflection (ATR),
where the properties of the crystal determine the angle
of internal reflection. The above terminology is condi-
tional. In each of the above measurement modes, the
light f lux detected after the interaction with the sam-
ple may contain a combination of the effects of
absorption, scattering, luminescence, and Raman
scattering.

From the point of view of the design, OMSs can be
divided into three types, depending on which of the
nodes of the information flow (Fig. 3) is responsible
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 77  N

Fig. 4. Physical effects used in optical spectrosc
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for specializing the spectrum analyzer according to its
application: source, detector, or software (Table 3).

The LED OMSs (type 1) present one of the most
attractive development fields. They combine the sim-
plicity of the design with a wide range of possibilities
[33]. Similar designs of OMSs with automatically
changeable filters and a broadband light source are
implemented, for example, in NDC analyzers (Day-
ton, United States) [100] and a BioView analyzer
equipped with a probe for analyzing processes by two-
dimensional f luorescence spectroscopy [101, p. 29].
Instead of LEDs, powerful laser diodes can be used,
for example, in f luorescence OMSs [99]. Highly infor-
mative and accurate f luorescence and Raman OMSs
can be implemented based on tunable lasers, espe-
cially if their cost—the main obstacle to the wide-
spread use—will decrease.

Optical multisensor systems of the second type are
characterized by specialized detectors in a specific
narrow spectral range, which is selected depending on
the application. These detectors include miniature
pyroelectric detectors [39, 40] for NIR and IR regions,
o. 3  2022
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Table 3. Classification of optical multisensor systems by the
design principle

Type Specialized 
unit

Elements and methods 
of forming channels

1 Source LEDs, laser diodes, lasers, filters
2 Detector Pyroelectric detector, CCD, DAD
3 Software Selection of variables or intervals, 

averaging
for example, the Fabry-Perót TIS [43]. However, spe-
cialized detectors can also be based on an optimized
array of DAD or CCD photodiodes with an individu-
ally developed method for reading spectral informa-
tion at the electronics level.

The third type of OMSs is most often used in
ready-made mini- and microspectrometers developed
for commercial or research purposes. In recent years,
there has been an increased interest in manufacturing
“democratic” spectroscopic analyzers, mainly for the
Vis and NIR regions. Debus et al. [21] showed that a
spectrometer made from scrap materials—an old CD,
a mirror, and an empty package—can be successfully
used to determine creatinine in urine. A smartphone
camera is used as a detector and a computer. There are
other examples of ready-made household devices,
such as a camera or a smartphone, as a basis for impro-
vised spectral analyzers [22, 106]. This approach man-
ifests the request for personalized analysis, noted
above. The lack of standardization is the specificity of
spectrometers of this type (we will call them simplified
spectrometers) and the maximum design lightening
due to the rejection of a built-in light source and other
elements, which is also typical for process spectrome-
ters. This is true not only for research prototypes but
also for commercial brands of higher quality (not so
cheap), such as products from RGB Photonics [44] or
Spectral Engine [45]. Simplified spectrometers are, in
fact, semifinished products, and their use in practical
analysis is associated with completing the missing
components, such as software for low-level data pro-
cessing (before they are written to the computer mem-
ory), which makes up for the lack of standardization,
including the unevenness and redundancy of the spec-
tral data collection step. At the stage of low-level data
processing, the selection of variables and their aver-
aged intervals takes place, which means that the OMSs
of the third type can be specialized (Table 3) by opti-
mizing software for the selected application. A typical
example is a sensor for the online determination of
water in a powdered food supplement during its pro-
duction [107].
JOURNAL O
EXAMPLES OF DEVELOPMENT AND USE 
OF OPTICAL MULTISENSOR SYSTEMS

This section illustrates the development and appli-
cations of OMSs with examples from various practical
areas: food and pharmaceutical industries, biotech-
nology, medical diagnostics, and ecology. The systems
presented in [37, 49–51, 69, 81, 96, 99, 102–112] with
the participation of the author are at different stages of
development (Table 4), based on the principle of sim-
plifying the full-spectrum method due to its special-
ization and optimization for a selected application.

Determination of the nutritional components of
milk. A new method was proposed to determine fat
and total protein in milk [97, 102, 103, 105, 106, 108–
110]. The method is based on light scattering, observed
in the spectral region 400–1100 nm. The experimental
results were further used in the development of a LED
OMS. The accurate determination of fat and protein
in natural non-homogenized milk is due to the ability
of the spectral method (in combination with chemom-
etrics) to distinguish low-selective spectral profiles of
scattering by colloidal particles of different types and
sizes: protein micelles (mainly 80–200 nm) and fat
globules (1–15 μm). To substantiate the approach
experimentally, a series of studies were carried out
with artificial milk samples prepared according to the
principles of planning a multicomponent calibration
[113, 114]. The natural variability in the size of the fat
globules was taken into account by the stepwise ultra-
sonic homogenization of the samples. Each sample
was analyzed first in the initial state and then after two
homogenization steps, 10 and 20 s each. Chemometric
analysis of full-spectrum data from a laboratory DAD
spectrometer proved a fundamental possibility of
determining fat and total protein in natural milk with
high variability in the size of the suspended particles
(Table 5).

A possibility of using LEDs to determine milk fat
and protein by the proposed method was demon-
strated in a series of preliminary experiments using the
analysis of digital images of diffuse spots observed
when the milk layer was illuminated at three different
wavelengths [106]. Using the algorithm developed
[115] for optimizing optical channels, the configura-
tion of the optimal OMS based on LEDs was theoret-
ically calculated. The set of LEDs was optimized for
the simultaneous (in the course of one measurement)
determination of fat and protein in a sample. The cal-
culated OMS with seven LEDs at the selected wave-
lengths (Table 5, LED OMS transmission) was com-
parable to the full-spectrum method in the accuracy of
determining milk components.

In a separate experiment, we showed a possibility
of analyzing milk in the diffuse reflectance mode and
supplementing the spectral resolution with a spatial
resolution to increase the accuracy [105]. The spectra
were recorded at various distances from the light
source irradiating the sample, using a probe with a f lat
F ANALYTICAL CHEMISTRY  Vol. 77  No. 3  2022
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Table 4. Examples of the development of optical multisensor systems

aAccording to Table 3.

Industry Parameter Sample Type of analysis Typea of OMS Reference

Food Fat and total protein Natural milk Online 3  [102]
Rapid 2  [103, 108]
Rapid 1  [106]
Field 1  [97, 105]

Standardized milk Field 1  [109]

Pharmacy Water in powders and other 
solid pharmaceutical forms

Granules, pellets Online 2, 3  [49, 69]
Food supplement '' 3  [107]

Total coating mass (thick-
ness)

Pellets '' 3  [49]
'' 3  [110]

Dissolution kinetics '' 3  [111]

Biotechnology Biomass Fermentation medium '' 3  [81]
'' 1  [99]
'' 1  [99]

Ethanol and carbohydrates '' 2  [81]

Medicine Oncological changes Biological tissue (kidney) Rapid 1  [37, 96]
'' 3  [50]

Rectum '' 3  [51]

Ecology Oil hydrocarbons Soil Field 2  [104, 112]

Table 5. Statistics of the multilevel validation of calibration PLS models for various prototypes of optical multisensor sys-
tems in the analysis of milk for fat and total protein

aNumber of optical channels; bnumber of latent variables (LVs) in the PLS model; ccalibration statistics (check on the training set); dfull
cross-validation; ecross-validation by segments; test-set validation; gmeasurement with a diode-array spectrometer for transmission in a
cell with an optical path length of 4 mm; hcalculation of LED OMS for transmission; icalculation of LED OMS for spatially resolved
measurements in diffuse reflectance mode.

Method NCa LVb
Root mean-square error

calibc FCVd SCVe TSVf

Fat

Full spectrumg 401 5 0.089 0.098 0.102 0.103

LED OMS transmissionh 7 5 0.088 0.095 0.099 0.090

LED OMS diffuse reflectance (reference-free)i 9 5 0.094 0.102 0.104 0.091

Protein
Full spectrum 401 4 0.040 0.042 0.043 0.040
LED OMS transmission 7 4 0.051 0.054 0.059 0.054
LED OMS diffuse reflectance (reference-free) 7 5 0.065 0.071 0.073 0.072
working surface and a line of eight light-guide chan-
nels brought out onto it. One light guide was con-
nected to a white light source, and the others were
connected to a spectral detector. A reference-free
method was used to analyze the data, according to
which one of the probe channels was used as the inter-
nal reference spectrum. The calculation of the LED
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 77  N
OMS with the spatial resolution was carried out using
augmented data, where the measured spectra of all
channels were combined. In this case, each spatial
channel could have its own optimal set of LEDs. The
use of optical fibers in the diffuse reflectance mode
was complicated by the weaker intensities of the
detected signals than those in the transmission analy-
o. 3  2022
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sis. However, the method showed an almost equal
accuracy (Table 5) as the full-spectrum one because of
spatial resolution and reference-free measurements.
Optical multisensor systems based on recording dif-
fuse reflectance are in special demand in milk analy-
sis. They are easy to maintain and well suited for field
and online analysis.

Global calibration models for the practical deter-
mination of fat and total protein were developed using
a thousand fresh milk samples collected in the Samara
region and adjacent regions over 1 year. The root
mean-square error of the determination for both fat
and protein was about 0.1% in the concentration
ranges 1.55–4.97 and 2.27–4.25%, respectively. In
[76, 108], a possibility of transferring models to
another spectrometer of the same type using the
slope and bias correction method was shown. The
loss of accuracy of the transferred model was insignif-
icant [108].

Quality control of pharmaceutical products. Online
analysis of solid pharmaceutical forms is one of prior-
ity fields for developing OMSs. It includes critically
important applications [49, 69, 107, 110, 111], i.e., the
determination of the concentration of water or an
active pharmaceutical ingredient (API), monitoring
the application of a protective polymer coating layer,
and the associated prediction of the solubility of the
finished product.

In the examples below, a DAD spectrometer
equipped with an LHP immersion diffuse reflectance
probe (Fig. 1) was used in the NIR region (Table 4) as
the main spectral instrument for online measurements
in the medium of an ongoing process [23].

Insufficient accuracy in determining the moisture
content of powders, granulates, and pellets is one of
the problems of the existing methods for online mon-
itoring in pharmaceutical production. The analysis, in
this case, is hampered by the high turbulence of the
granulation and drying processes in the f luidized bed
of the reactor, which ensures the circulation of the sus-
pended particles in the supplied bottom airf low. The
rapidly changing density of a virtual sample in the
“field of view” of the probe leads to strong f luctua-
tions in the total spectral intensity. As shown in [69],
conventional methods for eliminating this effect by the
mathematical preprocessing of the spectra (the so-
called scattering correction) simultaneously remove
useful spectral information, that is, the dependence of
light scattering on the material moisture. A high cor-
relation of spectral intensities with the mass fraction of
water was observed even at those wavelengths that did
not belong to the absorption bands of water.

To improve the accuracy of water determination,
calibration models were built for a representative data-
set that included 25 process batches, 16303 online
spectra, and 301 reference samples taken from the pro-
cess environment for thermogravimetric analysis. To
preserve the most complete information in the data
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(related to different water concentration), stochastic
changes in spectral intensity were eliminated by mov-
ing average smoothing along the time axis. This pre-
processing improved the quality of the data, avoided
information loss during the scattering correction, and
decreased the root mean-square error of the predic-
tion of water determination (%, g/100 g) in a wide
range of concentrations from the usual 0.3 to 0.1%.

Another pharmaceutical production that requires
online control is the application of a protective poly-
mer coating on the pellets, which ensures targeted
drug delivery by a delayed release of APIs in the diges-
tive tract. A separate task in analyzing pellet manufac-
turing processes and developing corresponding OMSs
is to predict the release profile of API pellets from the
NIR spectra recorded during the process. The dissolu-
tion kinetics determines the quality of the product.
The planned experiment [111] included 12 process
loads with two types of coating material and different
conditions. The solubility tests of samples taken from
the process medium at different stages of readiness
showed that the dependence of the fraction of the
released API on time t, regardless of the material and
coating thickness, was well described by an equation
with two constants m and k, similar to the kinetics of
autocatalysis. Parameter m was responsible for the
release rate (slope), and k was the delay (induction
period), that is,

Research has shown that m is solely determined by
the coating material and can be calculated from the
respective process batch data using sequential Bayes-
ian estimation. According to this method of statistical
analysis, the data of individual downloads are pro-
cessed one after the other, and the estimates obtained
by nonlinear approximation of the previous download
are used as a priori information for the next one.
Another constant, k, is closely related to the thickness
of the deposited coating (spectrally observed through
the total mass of the deposited material) and, there-
fore, can be determined using calibration on the NIR
spectra of the process. Thus, the spectral method was
used to predict the drug solubility curve for the first
time.

A possibility of determining the thickness of the
coating of pellets through their average size was shown
in [110]. The thickness was determined by analyzing
digital photographs taken in the sample process
medium with subsequent PLS calibration on the col-
lected image features. The method can become a basis
for the OMS for rapid analysis or can be converted into
an online method.

Online monitoring of biotechnological processes.
Optical multisensor systems of different types for
monitoring the fermentation process of yeast S. cerevi-
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Table 6. Statistics of the multilevel validation of PLS calibration models for the determination of ethanol, glucose, and fruc-
tose from the spectra of test samples taken by various prototypes of IR optical multisensor systems

aMatrix MF Fourier-transform IR spectrometer (full-spectrum method); bATR probe with a diamond working element; ca prototype
spectrometer based on a diffraction grating; dATR probe with a working element in the form of a replaceable loop made of polycrystal-
line fiber; eFabry-Pérot TIS; see also notes to Table 5.

Analyte Spectral method Probe LV
Root mean-square error

calib FCV SCV

EG set

Etanol FTIRa DATRb 2 4.55 5.79 5.10

GrSc DATR 2 5.18 6.67 5.63
GrS LATRd 2 7.76 10.58 8.34

FPIe LATR 2 7.48 9.74 5.75

Glucose FTIR DATR 2 5.47 6.66 5.53
GrS DATR 2 9.77 11.99 10.87
GrS LATR 2 9.12 11.95 11.62
FPI LATR 2 8.30 9.87 5.96

FG set

Fructose FTIR DATR 3 0.96 1.14 1.11
GrS DATR 3 2.21 3.82 3.71
GrS LATR 3 11.07 17.10 16.45
FPI LATR 3 2.92 6.64 1.58

Glucose FTIR DATR 3 2.35 2.92 1.82
GrS DATR 3 3.76 6.76 4.03
GrS LATR 3 7.78 14.11 9.30
FPI LATR 2 8.03 9.65 10.45
siae were developed based on NIR, IR, and fluores-
cence spectroscopy [81, 99].

A multisensor IR analyzer for the determination of
ethanol, glucose, and fructose [81] was created for
online measurements in the attenuated total ref lection
mode. The development used ATR probes based on
PIR fibers with two ATR elements: diamond (DATR)
and a replaceable tip with a PIR loop at the end
(LATR). In the tested OMS prototypes, two spectro-
metric techniques were used: a diffraction spectrome-
ter with a PYREOS pyrodetector (GrS) developed in
[81] and a Fabry-Pérot TIS (FPI). The TIS was tuned
to a relatively narrow spectral range (1150–950 cm–1)
in the IR “fingerprint” region, containing the absorp-
tion signals of all the components under study. The
approach [8] was used to simplify the reference full-
spectrum method (FTIR-DATR) by replacing the
Fourier-transform spectrometer or diamond probe
with more practicable analyzers.

The three created prototypes of IR-OMS were
compared using two test sample sets consisted of 25
pairwise mixtures of ethanol–glucose (EG set) and
fructose–glucose (FG set). The test sets were mixed in
accordance with the diagonal design [113]. A transi-
tion from a Fourier-transform spectrometer to a GrS
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 77  N
or FPI, as well as the replacement of a diamond probe
with an inexpensive and easily replicable LATR, were
associated with inevitable losses of spectral resolution
and signal quality (Table 6). Nevertheless, the multidi-
mensional models retained a sufficiently acceptable
accuracy for several practical applications of monitor-
ing processes in the food industry. Tests in a controlled
laboratory bioreactor have confirmed the good online
performance of one of the systems (GrS-LATR) in the
fermentation process.

The presented results show that chemometrics
methods of data analysis and calibration model build-
ing in the development of OMSs largely compensate
for the decrease in data quality: selectivity, spectral
resolution, and other characteristics. The fundamen-
tal possibility of creating an IR-OMS for monitoring
concentrations of ethanol, glucose, and fructose, typ-
ical components of fermentation medium, in the envi-
ronment of a biotechnological process has been con-
vincingly shown. A possibility of the independent
determination of various carbohydrates using OMSs
gives an undoubted advantage over the existing single-
channel, for example, refractometric analyzers.

Two prototypes of OMSs were developed based on
fluorimetry for the online monitoring of S. cerevisiae
o. 3  2022
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fermentation [99]. One of typical problems of f luoro-
metric spectral analysis of a fermentation medium is
the overlapping of biofluorophore signals over the
intense emission band of exciting radiation scattered
by the medium. The emphasis of the study is on over-
coming this effect by experimental and mathematical
means.

The first version shows that the additional emission
band observed in online spectra (from the built-in
optical sensor) with a maximum at 870 nm noticeably
improves the accuracy of biomass prediction com-
pared to using the signal regions of only f luorescence
or only the NIR sensor separately. The dependence of
the scattering intensity on the concentration of yeast
cells makes it possible to distinguish between the
increasing f luorescence of intracellular f luorophores
and the decreasing f luorescence of similar substances
in the composition of the fermentation medium.

To develop a method for the online monitoring of
S. cerevisiae cultivation using two-dimensional f luo-
rimetry (second option), 39 excitation-emission spec-
tra (EES) were obtained during the process, including
fluorescence spectra at 24 excitation wavelengths.
Because of the strong dominance of the excitation
radiation band in the spectra, the initial data of the
process were poorly suited for standard chemometric
methods of regression analysis. At the same time, data
preprocessing is destructive for a weak f luorescence
signal. Therefore, a new algorithm was developed for
data analysis that enabled resolving both the trajectory
of the process and pure two-dimensional EES of indi-
vidual f luorophores.

Tests of various optical spectral methods in four
fermentation processes of yeast S. cerevisiae have
proven the promise of creating OMSs based on IR
spectroscopy and fluorimetry, including two-dimen-
sional version of the latter method. The maximum
extraction of spectral information and the use of
exploratory data analysis methods at the development
stage are of great significance here.

Optical methods in medical diagnostics. Medical
diagnostics is an important field of application of
OMSs. In a series of studies [37, 50, 51, 96], proto-
types of optical diagnostic analyzers were developed to
determine the tumor border in human kidney cancer
(permission of the ethical commission EA1/134/12 of
the Charité Clinic, Berlin, Germany). Spectral histo-
pathology is a relatively new approach in oncological
diagnosis that can decrease the likelihood of error
during surgery. In the first example, prototypes of
LED OMSs based on NIR spectroscopy were devel-
oped, based on rapid alternating irradiation of a sam-
ple at several wavelengths, and diffusely reflected light
is recorded by a photodiode detector. According to
exploratory analysis, we selected four LEDs with cen-
tral wavelengths near the absorption maxima of water
(0.94 and 1.44 μm) and lipids (1.17 μm), known mark-
ers of some types of cancer. A LED with a maximum
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emission at 1.30 μm was intended for scattering cor-
rection and served as an internal reference channel fol-
lowing the concept of reference-free measurement
(see above). The study aimed to confirm the real pos-
sibility of recognizing pathologically altered biological
tissue experimentally by the proposed method through
spectrally detectable generalized chemical (content of
water, lipids, glycogen, and other cancer markers
without their quantitative determination) and mor-
phological characteristics with a small number of
available clinical samples.

To improve the reliability of the results, the experi-
mental design had several hierarchical levels, includ-
ing repeated measurements at several sample points.
Thus, the resulting measurements reflected the vari-
ability of the tissue both within the sample and
between them. Discriminant data analysis was carried
out by the PLS-DA method, based on the construc-
tion of a calibration model, where healthy and cancer
tissue samples are coded numerically (0 and 1, respec-
tively), and a new sample is assigned according to the
predicted value relative to the 0.5 boundary. The
obtained values of the sensitivity, selectivity, and accu-
racy for the most conservative method of model vali-
dation indicate the general suitability of LED NIR-
OMS for tumor recognition [37, 96] and the expedi-
ency of their further development. The main problem
remains the lack of sensitivity caused by a wide variety
of tissue of cancer samples, which can be overcome in
the future using more representative clinical data. In
the course of the development, the optical configura-
tion of the channels (their number and operating
wavelengths) and the measurement geometry must be
carefully optimized. The information content of the
measurement can be increased by expanding the spec-
tral region or by adding other spectroscopic methods.

In the second example, the diagnostic capabilities
of f luorescence and IR spectroscopy were investi-
gated, and the efficiency of their combination in one
device was examined. To ensure compatibility, the IR
spectra (recorded by a Fourier-transform spectrome-
ter with an ATR probe based on a PIR fiber) and flu-
orescence spectra (excited by a laser at 473 nm and
recorded through a diffuse reflectance probe) were
recorded in the same marked positions; a total of
31 points on eight available samples were measured.
The resulting dataset included 92 pairs of spectra,
which were then analyzed separately and together by
combining them into one vector along the spectral
axis. For analysis, the IR spectra were narrowed down
to the most informative (from the point of view of the
known biochemistry of the disease) region of 1220–
1010 cm–1, and the f luorescence spectra were nar-
rowed down to the region of the observed signal at
490–680 nm. A combinatorial approach was used to
find the optimal solution, testing all the best prepro-
cessing methods for individual spectral blocks and
their various combinations during the joint data anal-
ysis. The exploratory analysis showed a complete sep-
F ANALYTICAL CHEMISTRY  Vol. 77  No. 3  2022
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aration of the “cancer” and “normal” classes for the
combined data.

In PLS-DA analysis, f luorimetry shows a lower
discriminating power than IR spectroscopy. Combin-
ing f luorescence spectra with the second derivative of
IR spectra with subsequent preprocessing by the SNV
method gives a synergic effect. This suggests that the
methods considered are responsible for various bio-
markers, and because of the small penetration depth,
IR spectroscopy predominantly “works” at the cellu-
lar level, while the f luorescence signal can come from
a depth of several millimeters, carrying additional
chemical and morphological information. The result
of this study substantiates the feasibility of combining
ATR-IR spectroscopy and fluorimetry in one analyti-
cal device. In developing a multimodal analyzer, IR
and fluorescence spectrometers can be replaced by an
OMS.

Environmental monitoring. The final practical
example is devoted to developing a rapid method and
OMSs for the environmental monitoring of soils to
determine total petroleum hydrocarbons (TPH),
based on IR measurements through an ATR probe
[104, 112]. A preliminary analysis of the IR spectra of
a designed series of 57 artificial soil samples prepared
by mixing a soil substrate, clay, sand, and dolomite
flour made it possible to study the spectral character-
istics of soils of various compositions and compare
them with the spectra of oil. Based on these data, the
spectral region 4000–1700 cm–1 and the optimal ATR
probe based on a chalcogenide IR fiber with a working
crystal element ZrO2 were selected to quantify TPH.

A calibration series of contaminated samples were
prepared by adding oil and water, as the main natural
factor affecting the measurement, to 100 g of an artifi-
cial soil sample, in a composition close to that typical
in the Samara region. During measurements, the
probe was brought into close contact with the sample
pellet with the crystal completely immersed in it. A
training set of 25 samples followed a diagonal scheme
[113], in which the concentrations of both components
were varied in the range 1–13%. This set was used to
build calibration models for TPH and water
(%, g/100 g). The best accuracy of the models was
achieved by the method of interval optimization [115]
using five three-point intervals with averaging without
preprocessing for TPH and four individual variables
after applying preprocessing methods for the corre-
sponding data, selected as optimal. The root mean-
square errors of the prediction were 1.1% for TPH and
0.6% for water.

The main experimental problem of the method is
the low overall intensity of the spectra of drier samples
and the low precision of respective measurements,
which is generally typical for the ATR analysis of solid
materials. The proposed techniques for data prepro-
cessing and analysis largely overcome this adverse
effect, and the achieved determination errors are
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 77  N
acceptable for many applied tasks. The results suggest
the further development of OMSs for the field deter-
mination of TPH, based on IR spectroscopy in the
region 4000–1700 cm–1 through a fiber-optic ATR
probe. The further increase in the accuracy of the
method requires the creation of an improved measure-
ment interface.

CONCLUSIONS
Optical multisensor systems, specialized optical

analyzers of low selectivity, represent a new direction
in the development of analytical spectroscopy.
Because of their practicability features, such as dimin-
utiveness, portability, autonomy, online use, and
affordability, OMSs can significantly expand the ana-
lytical capabilities of optical spectroscopy in compari-
son with conventional laboratory analysis. Their
planned widespread use for solving various qualitative
and quantitative analysis problems in the industry,
medicine, and other fields increases the level of ana-
lytical control of many vital aspects of human activity.
The further development of optical multisensor sys-
tems is associated with several scientific, technical,
and methodological problems.
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